Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model
نویسندگان
چکیده
We study robust formulations of assortment optimization problems under the multinomial logit choice model. The novel aspect of our formulations is that the true parameters of the logit model are assumed to be unknown, and we represent the set of likely parameter values by a compact uncertainty set. The objective is to find an assortment that maximizes the worst case expected revenue over all parameter values in the uncertainty set. We consider both static and dynamic settings. The static setting ignores inventory consideration, while in the dynamic setting, there is a limited initial inventory that must be allocated over time. We give a complete characterization of the optimal policy in both settings, show that it can be computed efficiently, and derive operational insights. We also propose a family of uncertainty sets that enables the decision maker to control the tradeoff between increasing the average revenue and protecting against the worst case scenario. Numerical experiments show that our robust approach, combined with our proposed family of uncertainty sets, is especially beneficial when there is significant uncertainty in the parameter values. When compared to other methods, our robust approach yields over 10% improvement in the worst case performance, but it can also maintain comparable average revenue if average revenue is the performance measure of interest.
منابع مشابه
On upper bounds for assortment optimization under the mixture of multinomial logit models
The assortment optimization problem under the mixture of multinomial logit models is NPcomplete and there are different approximation methods to obtain upper bounds on the optimal expected revenue. In this paper, we analytically compare the upper bounds obtained by the different approximation methods. We propose a new, tractable approach to construct an upper bound on the optimal expected reven...
متن کاملRobust Assortment Optimization under the Markov Chain Model
Assortment optimization problems arise widely in many practical applications such as retailing and online advertising. In this problem, the goal is to select a subset from a universe of substitutable items to offer to customers in order to maximize the expected revenue. The demand of any item depends on the substitution behavior of the customers that is captured mathematically by a choice model...
متن کاملAssortment Optimization under the Sequential Multinomial Logit Model
We study the assortment optimization problem under the Sequential Multinomial Logit (SML), a discrete choice model that generalizes the multinomial logit (MNL). Under the SML model, products are partitioned into two levels, to capture differences in attractiveness, brand awareness and, or visibility of the products in the market. When a consumer is presented with an assortment of products, she ...
متن کاملAssortment Optimization under the Multinomial Logit Model with Random Choice Parameters
We consider assortment optimization problems under the multinomial logit model, where the parameters of the choice model are random. The randomness in the choice model parameters is motivated by the fact that there are multiple customer segments, each with different preferences for the products, and the segment of each customer is unknown to the firm when the customer makes a purchase. This cho...
متن کاملAssortment Optimization under Unknown MultiNomial Logit Choice Models
Motivated by e-commerce, we study the online assortment optimization problem. The seller offers an assortment, i.e. a subset of products, to each arriving customer, who then purchases one or no product from her offered assortment. A customer’s purchase decision is governed by the underlyingMultiNomial Logit (MNL) choice model. The seller aims to maximize the total revenue in a finite sales hori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Operations Research
دوره 60 شماره
صفحات -
تاریخ انتشار 2012